Refresh

This website www.w3schools.blog/forces-between-charges is currently offline. Cloudflare\'s Always Online™ shows a snapshot of this web page from the Internet Archive\'s Wayback Machine. To check for the live version, click Refresh.

Forces Between Charges

Lets us express the force between two point charges in terms of their position vector.

Figure:2.a

Consider two point charges $q_{1}$and $q_{2}$are at P and Q respectively. The position vector of point P is = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>P</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mover><msub><mi>r</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover></math> and that of point Q is <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>Q</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mover><msub><mi>r</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover></math> .

Let $r$ be the distance between these charges.

We have,

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>12</mn></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msub><mi>&#x3C0;&#x3B5;</mi><mn>0</mn></msub></mrow></mfrac><mfrac><mrow><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac><msub><mover><mi>r</mi><mo>^</mo></mover><mn>21</mn></msub></math>

Where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover><mi>r</mi><mo>^</mo></mover><mn>21</mn></msub><mo>=</mo><mfrac><msub><mover><mi>r</mi><mo>&#x2192;</mo></mover><mn>21</mn></msub><mi>r</mi></mfrac></math> is the unit vector in direction from $q_{2}$ to $q_{1}$.

The above equation can be rewritten as,

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>12</mn></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msub><mi>&#x3C0;&#x3B5;</mi><mn>0</mn></msub></mrow></mfrac><mfrac><mrow><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub></mrow><msup><mi>r</mi><mn>3</mn></msup></mfrac><mi>r</mi><mo>&#xA0;</mo><msub><mover><mi>r</mi><mo>^</mo></mover><mn>21</mn></msub></math> ……………….. (1)

Using triangle law of vector addition, we have,

<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>Q</mi></mrow><mo>&#x2192;</mo></mover><mo>+</mo><mover><mrow><mi>Q</mi><mi>P</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mover><mrow><mi>O</mi><mi>P</mi></mrow><mo>&#x2192;</mo></mover><mspace linebreak="newline"/><mi>o</mi><mi>r</mi><mo>,</mo><mo>&#xA0;</mo><mover><mrow><mi>Q</mi><mi>P</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mover><mrow><mi>O</mi><mi>P</mi></mrow><mo>&#x2192;</mo></mover><mo>-</mo><mover><mrow><mi>O</mi><mi>Q</mi></mrow><mo>&#x2192;</mo></mover></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>o</mi><mi>r</mi><mo>,</mo><mo>&#xA0;</mo><mi>r</mi><mo>&#xA0;</mo><msub><mover><mi>r</mi><mo>^</mo></mover><mn>21</mn></msub><mo>=</mo><mover><msub><mi>r</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover><mo>-</mo><mover><msub><mi>r</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover></math>

And <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>o</mi><mi>r</mi><mo>,</mo><mo>&#xA0;</mo><mi>r</mi><mo>&#xA0;</mo><mo>=</mo><mfenced open="|" close="|"><mrow><mover><msub><mi>r</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover><mo>-</mo><mover><msub><mi>r</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover></mrow></mfenced><mo>&#xA0;</mo></math>

Putting these values in equation (1),

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>12</mn></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msub><mi>&#x3C0;&#x3B5;</mi><mn>0</mn></msub></mrow></mfrac><mfrac><mrow><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub></mrow><msup><mfenced open="|" close="|"><mrow><mover><msub><mi>r</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover><mo>-</mo><mover><msub><mi>r</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover></mrow></mfenced><mn>3</mn></msup></mfrac><mfenced><mrow><mover><msub><mi>r</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover><mo>-</mo><mover><msub><mi>r</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover></mrow></mfenced></math>

Similarly,

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>21</mn></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msub><mi>&#x3C0;&#x3B5;</mi><mn>0</mn></msub></mrow></mfrac><mfrac><mrow><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub></mrow><msup><mfenced open="|" close="|"><mrow><mover><msub><mi>r</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover><mo>-</mo><mover><msub><mi>r</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover></mrow></mfenced><mn>3</mn></msup></mfrac><mfenced><mrow><mover><msub><mi>r</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover><mo>-</mo><mover><msub><mi>r</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover></mrow></mfenced></math>

Superposition:

The principle of superposition gives the method to find the force on a charge when the system consists of many charges. When multiple charges are interacting, the total force on a given charge is given by,

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>1</mn></msub><mo>=</mo><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>12</mn></msub><mo>+</mo><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>13</mn></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>+</mo><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mrow><mn>1</mn><mi>n</mi></mrow></msub></math>

Considering all the charges as negative, the electrostatic forces between these charges are the force of repulsion as like charges repel each other.

principle of superposition of electric charges

Figure:2.b

Therefore, using Coulomb’s law,

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>12</mn></msub><mo>=</mo><mfrac><mrow><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub><msub><mover><mi>r</mi><mo>^</mo></mover><mn>12</mn></msub></mrow><msubsup><mi>r</mi><mn>12</mn><mn>2</mn></msubsup></mfrac></math> ,

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mn>13</mn></msub><mo>=</mo><mfrac><mrow><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>3</mn></msub><msub><mover><mi>r</mi><mo>^</mo></mover><mn>13</mn></msub></mrow><msubsup><mi>r</mi><mn>13</mn><mn>2</mn></msubsup></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><msub><mover><mi>F</mi><mo>&#x2192;</mo></mover><mrow><mn>1</mn><mi>n</mi></mrow></msub><mo>=</mo><mfrac><mrow><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mi>n</mi></msub><msub><mover><mi>r</mi><mo>^</mo></mover><mrow><mn>1</mn><mi>n</mi></mrow></msub></mrow><msubsup><mi>r</mi><mrow><mn>1</mn><mi>n</mi></mrow><mn>2</mn></msubsup></mfrac></math>

Total force is given by,

An example:

Three point charges $Q_{1}=4\times 10^{-9}C=4 nC$, $Q_{2}=6\times 10^{-9}C=6 nC$, and $Q_{3}=-3\times 10^{-9}C=-3 nC$form a right angle triangle. The distances between them are shown below. Find the magnitude of electrostatic force on charge $Q_{1}$due to $Q_{2}$ and $Q_{3}$. Given, dielectric constant = $9\times 10^{9}Nm^{2}C^{-2}$

Figure:2.c

The magnitude of electrostatic force exerted by $Q_{2}$on $Q_{1}$ is given by,

$F_{2}=k\frac{4\times 10^{-9}\times 6\times 10^{-9}}{(5\times 10^{-2})^{2}}$

Or, $F_{2}=k\frac{4\times 10^{-9}\times 6\times 10^{-9}}{25\times 10^{-4}}$

Or, $F_{2}=k\frac{4\times 10^{-9}\times 6\times 10^{-9}}{25\times 10^{-4}}=0.96 k\times 10^{-14}$

Putting $k=9\times 10^{9}$, we have,

Or, $F_{2}=9\times 10^{9}\times 0.96 \times 10^{-14}=8.64\times 10^{-5}$N

The magnitude of electrostatic force exerted by $Q_{3}$ on $Q_{1}$ is given by,

$F_{3}=k\frac{4\times 10^{-9}\times (3\times 10^{-9})}{(3\times 10^{-2})^{2}}=9\times 10^{9} \times \frac{12\times 10^{-18}}{9\times 10^{-4}}= 12\times 10^{-5}$N

The magnitude of the resultant force is given by,

$F_{R}^{2}=F_{2}^{2}+F_{3}^{2}$

Or, $F_{R}^{2}=$$(8.64\times 10^{-5})^{2}+(12\times 10^{-5})^{2}$

Or, $F_{R}=\sqrt{(8.64\times 10^{-5})^{2}+(12\times 10^{-5})^{2}}$

Or, $F_{R}=\sqrt{(74.64\times 10^{-10})+(144\times 10^{-10})}$

Or, $F_{R}=\sqrt{(218.64\times 10^{-10})}$

Or, $F_{R}=1.479\times 10^{-4}$N.

Figure:2.d

$tan \theta =$$12\times 10^{-5}$/$8.64\times 10^{-5}$

Or, $tan \theta =$$1.39$

Or, $\theta =tan^{-1}1.39=54.26^{0}$ to the negative x-axis.